MMAT5520 Differential Equations & Linear Algebra Final Exam (12 Dec 2012) Time allowed: 120 mins

Each question carries 10 marks marks

- 1. Given that $y_1(t) = t$ is a solution to the equation $t^2y'' ty' + y = 0, t > 0.$
 - (a) Use the method of reduction of order to find a solution $y_2(t)$ such that $y_2(t)$ is not a linear function.
 - (b) Explain why $y_1(t), y_2(t)$ are linearly independent.
- 2. Write down an appropriate form of a particular solution (do not solve the equation) to each of the following equations.
 - (a) $y^{(3)} + 4y'' + 4y' = 4te^{3t} te^{-2t} + \sin 2t$
 - (b) $y^{(4)} + 2y'' + y = te^t \cos t + 3t^2 2t \cos t$

3. Let

$$\mathbf{A} = \left(\begin{array}{rrr} 0 & 2 & -3 \\ 2 & -3 & 6 \\ 2 & -4 & 7 \end{array} \right).$$

- (a) Find a non-singular matrix **P** which diagonalizes **A**.
- (b) Find \mathbf{A}^7 in terms of \mathbf{P} and \mathbf{P}^{-1} . (You don't need to find \mathbf{P}^{-1} .)
- (c) Express \mathbf{A}^{-1} in the form $a\mathbf{A}^2 + b\mathbf{A} + c\mathbf{I}$ for real numbers a, b, c.
- 4. Solve the homogeneous systems $\mathbf{x}' = \mathbf{A}\mathbf{x}$, where derivatives are taken with respect to t, for the following matrix \mathbf{A} .

(a)
$$\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}$$

(b) $\mathbf{A} = \begin{pmatrix} -1 & -2 & 4 \\ 1 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix}$
5. Let $\mathbf{A} = \begin{pmatrix} 5 & 1 & -3 \\ -1 & 3 & 2 \\ 1 & 0 & 1 \end{pmatrix}$

- (a) Find a generalized eigenvector of rank 3 of **A**.
- (b) Solve

$$\mathbf{x}' = \mathbf{A}\mathbf{x},$$

where the derivative is taken with respect to t.

6. Let

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 2\\ 2 & -2 \end{array}\right).$$

- (a) Find $\exp(\mathbf{A}t)$.
- (b) Find a fundamental matrix $\Psi(t)$ for the homogeneous system $\mathbf{x}' = \mathbf{A}\mathbf{x}$ with $\Psi(0) = \begin{pmatrix} 1 & 1 \\ -2 & 0 \end{pmatrix}$.
- (c) Solve the non-homogeneous system

$$\mathbf{x}' = \mathbf{A}\mathbf{x} + 90 \begin{pmatrix} 2t\\1 \end{pmatrix}$$

- 7. Let **A** be a 3×3 matrix. Suppose **A** has an eigenvalue λ and a generalized eigenvector η of rank 3 associated with λ .
 - (a) Explain whether **A** is diagonalizable.
 - (b) Find the minimal polynomial of **A**. Explain your answer.
 - (c) Let $\eta_1 = (\mathbf{A} \lambda \mathbf{I})\eta$ and $\eta_2 = (\mathbf{A} \lambda \mathbf{I})^2\eta$. Prove that η, η_1, η_2 are linearly independent.