MMAT5520 Differential Equations \& Linear Algebra Final Exam (12 Dec 2012)
 Time allowed: 120 mins

Each question carries 10 marks marks

1. Given that $y_{1}(t)=t$ is a solution to the equation $t^{2} y^{\prime \prime}-t y^{\prime}+y=0, t>0$.
(a) Use the method of reduction of order to find a solution $y_{2}(t)$ such that $y_{2}(t)$ is not a linear function.
(b) Explain why $y_{1}(t), y_{2}(t)$ are linearly independent.
2. Write down an appropriate form of a particular solution (do not solve the equation) to each of the following equations.
(a) $y^{(3)}+4 y^{\prime \prime}+4 y^{\prime}=4 t e^{3 t}-t e^{-2 t}+\sin 2 t$
(b) $y^{(4)}+2 y^{\prime \prime}+y=t e^{t} \cos t+3 t^{2}-2 t \cos t$
3. Let

$$
\mathbf{A}=\left(\begin{array}{ccc}
0 & 2 & -3 \\
2 & -3 & 6 \\
2 & -4 & 7
\end{array}\right)
$$

(a) Find a non-singular matrix \mathbf{P} which diagonalizes \mathbf{A}.
(b) Find \mathbf{A}^{7} in terms of \mathbf{P} and \mathbf{P}^{-1}. (You don't need to find \mathbf{P}^{-1}.)
(c) Express \mathbf{A}^{-1} in the form $a \mathbf{A}^{2}+b \mathbf{A}+c \mathbf{I}$ for real numbers a, b, c.
4. Solve the homogeneous systems $\mathbf{x}^{\prime}=\mathbf{A x}$, where derivatives are taken with respect to t, for the following matrix \mathbf{A}.
(a) $\mathbf{A}=\left(\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right)$
(b) $\mathbf{A}=\left(\begin{array}{ccc}-1 & -2 & 4 \\ 1 & 2 & -2 \\ 0 & 0 & 1\end{array}\right)$
5. Let $\mathbf{A}=\left(\begin{array}{ccc}5 & 1 & -3 \\ -1 & 3 & 2 \\ 1 & 0 & 1\end{array}\right)$
(a) Find a generalized eigenvector of rank 3 of \mathbf{A}.
(b) Solve

$$
\mathbf{x}^{\prime}=\mathbf{A x}
$$

where the derivative is taken with respect to t.
6. Let

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 2 \\
2 & -2
\end{array}\right)
$$

(a) Find $\exp (\mathbf{A} t)$.
(b) Find a fundamental matrix $\Psi(t)$ for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ with $\Psi(0)=\left(\begin{array}{cc}1 & 1 \\ -2 & 0\end{array}\right)$.
(c) Solve the non-homogeneous system

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}+90\binom{2 t}{1}
$$

7. Let \mathbf{A} be a 3×3 matrix. Suppose \mathbf{A} has an eigenvalue λ and a generalized eigenvector η of rank 3 associated with λ.
(a) Explain whether \mathbf{A} is diagonalizable.
(b) Find the minimal polynomial of \mathbf{A}. Explain your answer.
(c) Let $\eta_{1}=(\mathbf{A}-\lambda \mathbf{I}) \eta$ and $\eta_{2}=(\mathbf{A}-\lambda \mathbf{I})^{2} \eta$. Prove that η, η_{1}, η_{2} are linearly independent.
